How to enhance ipsilateral actions of pyramidal tract neurons.
نویسندگان
چکیده
We have shown previously that ipsilateral pyramidal tract (PT) neurons facilitate the actions of reticulospinal neurons on feline motoneurons (Edgley et al., 2004), which indicates that they might assist the recovery of motor functions after injuries of contralateral corticospinal neurons. Nevertheless, stimulation of ipsilateral PT fibers alone only rarely evoked any synaptic actions in motoneurons. The aim of this study was to investigate possible ways of enhancing such actions and of inducing more effective excitation and inhibition of motoneurons. The effects of stimulation of the ipsilateral PT were investigated after eliminating the spinal actions of contralateral PT fibers by hemisecting the spinal cord at a low thoracic level and were estimated from intracellular records from hindlimb motoneurons. Two measures were used to enhance PT actions. The first was to increase the probability of activation of reticulospinal neurons by mutual facilitation of actions of ipsilateral and contralateral PT neurons. The second was to enhance synaptic transmission between PT neurons and reticulospinal neurons, and in pathways between the reticulospinal neurons and motoneurons via commissural interneurons, by systemic application of a K+ channel blocker, 4-aminopyridine (4-AP). The results show that under favorable conditions, ipsilateral PT neurons may induce EPSPs and IPSPs in hindlimb motoneurons, or even action potentials, via the reticulospinal pathway. This study strengthens previous conclusions that ipsilateral PT neurons can potentially replace, at least to some extent, the actions of injured contralateral PT neurons. It also suggests that 4-AP might improve the progress of the recovery.
منابع مشابه
Ipsilateral actions of feline corticospinal tract neurons on limb motoneurons.
Contralateral pyramidal tract (PT) neurons arising in the primary motor cortex are the major route through which volitional limb movements are controlled. However, the contralateral hemiparesis that follows PT neuron injury on one side may be counteracted by ipsilateral of actions of PT neurons from the undamaged side. To investigate the spinal relays through which PT neurons may influence ipsi...
متن کاملFacilitation of ipsilateral actions of corticospinal tract neurons on feline motoneurons by transcranial direct current stimulation.
Ipsilateral actions of pyramidal tract (PT) neurons are weak but may, if strengthened, compensate for deficient crossed PT actions following brain damage. The purpose of the present study was to examine whether transcranial direct current stimulation (tDCS) can strengthen ipsilateral PT (iPT) actions; in particular, those relayed by reticulospinal neurons co-excited by axon collaterals of fibre...
متن کاملUncrossed actions of feline corticospinal tract neurones on hindlimb motoneurones evoked via ipsilaterally descending pathways.
Despite numerous investigations on the corticospinal system there is only scant information on neuronal networks mediating actions of corticospinal neurones on ipsilateral motoneurones. We have previously demonstrated double crossed pathways through which pyramidal tract neurones can influence ipsilateral motoneurones, via contralaterally descending reticulospinal neurones and spinal commissura...
متن کاملBilateral postsynaptic actions of pyramidal tract and reticulospinal neurons on feline erector spinae motoneurons.
Trunk muscles are important for postural adjustments associated with voluntary movements but little has been done to analyze mechanisms of supraspinal control of these muscles at a cellular level. The present study therefore aimed to investigate the input from pyramidal tract (PT) neurons to motoneurons of the musculus longissimus lumborum of the erector spinae and to analyze to what extent it ...
متن کاملEffects of resveratrol on intrinsic neuronal properties of CA1 pyramidal neurons in rat hippocampal slices
Introduction: Resveratrol (3,5,4-trihydroxystilbene) a non-flavonoid polyphenol found in some plants like grapes, peanuts and pomegranates, possesses a wide range of biological effects. Evidence indicates that resveratrol has beneficial effects on nervous system to induce neuroprotection. However, the cellular mechanisms of the effects are not fully determined. In the present study, the cellula...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 25 32 شماره
صفحات -
تاریخ انتشار 2005